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a b s t r a c t

Pedestrian modeling is a good way to predict pedestrian movement and thus can
be used for controlling pedestrian crowds and guiding evacuations in emergencies.
In this paper, we propose a pedestrian movement model based on artificial neural
network. In the model, the pedestrian velocity vectors are predicted with two sub
models, Semicircular Forward Space Based submodel (SFSB-submodel) and Rectangular
Forward Space Based submodel (RFSB-submodel), respectively. Both unidirectional and
bidirectional pedestrian flow at straight corridors are investigated by comparing the
simulation and the corresponding experimental results. It is shown that the pedestrian
trajectories and the fundamental diagrams from the model are all consistent with
that from experiments. And the typical lane-formation phenomena are observed in
bidirectional flow simulation. In addition, to quantitatively evaluate the precision of
the prediction, the mean destination error (MDE) and mean trajectory error (MTE)
are defined and calculated to be approximately 0.2 m and 0.12 m in unidirectional
flow scenario. In bidirectional flow, relative distance error (RDE) is about 0.15 m. The
findings indicate that the proposed model is reasonable and capable of simulating the
unidirectional and bidirectional pedestrian flow illustrated in this paper.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Accidents resulting from the crowd crushes and stampedes occur frequently causing tremendous loss of life and
property. The study on pedestrian dynamics can provide efficient strategies and approaches to guide pedestrian flow
and thus reduce accident loss. While pedestrian movement modeling is a primary and effective method to simulate and
predict pedestrian movement.

In the past decades, scholars have built hundreds of pedestrian movement models [1]. These models can be divided
into the macroscopic models and microscopic models. The former generally consider the relationships among system’s
characteristics like density, flow and mean speed from the system level rather than a single unit [2]. In contrast to
macroscopic models, microscopic models focus on an individual in pedestrian flow to represent his/her microscopic
properties like position and velocity. In the term of the continuity of time and space, microscopic models generally fall into
two categories, discrete models and continuum models. Cellular Automata (CA) models [3] and Lattice Gas (LG) models [4]
are two typical discrete models. Opposite of the discrete models, the time, space and pedestrian motion state in continuum
models are all continuous. Force-based model like Social Force Model (SFM) [5] and Centrifugal Force Model (CFM) [6],
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Nomenclature

SFSB Semicircular Forward Space Based
RFSB Rectangular Forward Space Based
(x0, y0) Coordinate of the subject pedestrian
(xj, yj) Coordinate of the pedestrian j
|v⃗0| Magnitude of subject pedestrian’ velocity
θv⃗0 Direction of subject pedestrian’ velocity

L⃗j Forward distance vector from (x0, y0) to (xj, yj), whose magnitude is
⏐⏐⏐L⃗j⏐⏐⏐

I⃗j Input parameters vector of network in SFSB-submodel

I⃗j,x, I⃗j,y x, y components of I⃗j, whose magnitudes are respectively
⏐⏐⏐⃗Ij,x⏐⏐⏐, ⏐⏐⏐⃗Ij,y⏐⏐⏐

θ Direction angle of L⃗j, ∈ (−π, π]

np The number of experimental pedestrians in semicircular forward space
nw The number of discrete wall pieces in semicircular forward space
nc,i The number of total objects (pedestrians and discrete wall pieces) in semicircular forward space

for Network i
Nin The number of neurons in input layer
Nout The number of neurons in output layer
Nh1, Nh2 The number of neurons in first and second hidden layer
bent Width of the corridor entrance (m)
bcor Width of the corridor (m)
bexit Width of the corridor exit (m)
E Mean square error
O Output of neural network
T Target value
MDE Mean destination error
DEi Destination error of pedestrian i
(xDi , y

D
i )exp Coordinate of pedestrian at the last time step in experiment

(xDi , y
D
i )sim Coordinate of pedestrian at the last time step in simulation

MTE Mean trajectory error (m)
MTE The mean of MTE (m)
TEt Location error of one pedestrian in simulation and experiment at time step t (m)
totalTS The number of total time steps
(xt , yt )exp Coordinate of pedestrian at time t in experiment
(xt , yt )sim Coordinate of pedestrian at time t in simulation
J Pedestrian flow (ped/s)
ρ Pedestrian density (ped/m2)
v Pedestrian movement speed (m/s)

as a typical continuum models, is based on the assumption that the motion of a pedestrian is driven by the virtual forces
from the agent itself, surrounding pedestrians and the walls.

Despite that the current pedestrian movement models have presented many significant phenomena and have a certain
capacity to describe pedestrian motion characteristics in some specific scenarios, there still remains some problems
and challenges. For instance, the modeling process is relatively complex because of various mathematical formulas
and movement rules. It is difficult to take individual differences of pedestrians and other complex influence factors
into account. Furthermore, the parameters in most of pedestrian movement models are adjusted using small part of
experimental data, which makes the generalization ability of model poor.

Machine learning, as a subset of Artificial Intelligence, is used in a wide variety of applications. In the field of pedestrian
dynamics, traditional machine learning algorithms such as Support Vector Regression (SVR) [7], Reinforcement Learning
(RL) [8] have been used to improve the modeling of pedestrian dynamics. Moreover, recently artificial neural network is
rapidly developing and also wildly used in various research fields owing to its advantages in dealing with nonlinearity,
uncertainty and other problems. To overcome the above-mentioned shortages, there appear some works on pedestrian
dynamics based on artificial neural network. Shao [9] developed a fundamental model of pedestrian simulation based
on Cellular Automata. In order to consider the terrain factors, neural network was embedded into pedestrians ensuring
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Fig. 1. The sketch of the subject pedestrian’s forward space.

agents motion more intelligent and realistic. Ma et al. [10] proposed a novel approach for simulating pedestrian movement
behavior based on artificial neural network. The neural network was trained utilizing experimental data collected from
a realistic road crossing with bidirectional flow. Simulation results were reasonably consistent with the real-life scenario
and acceptable from an engineering perspective. Song et al. [11] proposed a multi-scenario adaptive neural network to
model pedestrian behavior. Normalization of relative positions among pedestrians and speed direction transfer algorithm
were used to train neural network. It is shown that the proposed neural network was capable of reproducing more
realistic flow in multiple scenarios. Besides, other newly developed deep learning method, such as generative adversarial
network (GAN) [12,13], also has begun applying on pedestrian trajectory prediction. However, the pedestrian movement
modeling researches based on artificial neural network are still insufficient and are necessary to make further studies.
Motivated by that, a pedestrian movement model based on artificial neural network is proposed in this paper to mimic
pedestrian behaviors in both unidirectional and bidirectional flow at straight corridors, which are two typical and common
phenomena in our real life. Recently, A lot of works about unidirectional and bidirectional flow have been conducted
by many researchers including experiments [14,15] and models [16,17]. Scholars still pay attention on the studies of
unidirectional and bidirectional flow due to unknown parts of crowd movement mechanism and especially the low quality
of reproduced experiment trajectories given by existing pedestrian models.

The organization of this paper is as follows. Section 2 detailedly illustrates the model structure and implementation
details. In Section 3, the unidirectional and bidirectional flow experiment datasets are introduced. Data preprocessing
methods and the details of network training are also presented in Section 3. Then in the next section, the model is used
to mimic the pedestrian unidirectional and bidirectional flow at straight corridors. The simulation results are analyzed
and compared with experiments at the same scenarios to validate the proposed model. Section 5 ends the paper with the
main conclusions and some future works.

2. Model

Before introducing the model, we firstly make the following definitions and assumptions.

a. The studied pedestrian at current moment is called as subject pedestrian.
b. As shown in Fig. 1, the forward space of subject pedestrian is a semi-infinite space, whose boundary passes through

the coordinate points of the subject pedestrian and is perpendicular to the movement direction of the system
consisting of overall pedestrians.

c. Only the pedestrians in the forward space affect the movement of the subject pedestrian. The pedestrians at the
rear have little influence on the movement of the subject pedestrian.

d. To reduce the calculation amount, we choose 2.1 m as the standard distance to process the forward space in the
rest of the article, since the pedestrians 2.1 m away have little impact on the subject pedestrian’s movement [18].

The overall framework of pedestrian movement model proposed in this paper is shown in Fig. 2. According to different
requirements, the forward space of the subject pedestrian is processed into two shapes, semicircle and rectangle. The
model consists of two sub models, which are respectively built based on the semicircular forward space and the
rectangular forward space. The Semicircular Forward Space Based sub model (i.e. SFSB-submodel) mainly utilizes the
data produced from the forward distance to obtain the magnitude of pedestrian’s current velocity. The direction of
velocity is derived from the Rectangular Forward Space Based sub model (i.e. RFSB-submodel) according to the pedestrian
distribution. The detail information about the both of submodels will be introduced in the next two subsection.

It should be noted that in the building process of our model, several attempts of model structure were conducted to
find out the best fit for our model assumption and neural network structure. These attempts are list in Table 1. After
simply comparing the results of these models, it was found that the fourth model performed better than the others did.
Model building trials showed that the combination of discrete and continuous perceptive region is a promising research
area. Therefore, in the paper, we only introduce the third model consisting of two sub models in detail.
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Fig. 2. System flowchart. The pedestrian movement model based on BP neural network consists of two sub models, the Semicircular Forward Space
Based sub model (SFSB-Submodel) and the Rectangular Forward Space Based sub model (RFSB-submodel).

Table 1
Attempts of different models.
Model index Sub-model Shape of forward space Continuity Output of network

1 Only SFSB Semicircular Continuous Magnitude and direction of velocity

2 Only RFSB Rectangular Discrete Magnitude and direction of velocity

3 SFSB Semicircular Continuous Direction of velocity
RFSB Rectangular Discrete Magnitude of velocity

4 SFSB Semicircular Continuous Magnitude of velocity
RFSB Rectangular Discrete Direction of velocity

2.1. Semicircular Forward Space Based submodel (SFSB-submodel)

The semicircular forward space based sub model are mainly used to predict the magnitude of pedestrians’ velocity.
Here, we choose a three-layer BP neural network as the basic framework of this sub model. The output of the network
is the magnitude of pedestrians’ velocity at current moment. The selection of input parameters is based on the forward
distance of pedestrians, which includes many useful information about pedestrian behavior. Next, we will elaborate the
whole process of the input parameters selection.

Although the effect on subject pedestrian is difficult to quantify, fortunately, the forward distance can reflect the
interaction between the subject pedestrian and other pedestrians in a degree. So, in the term of the forward distance

vector, we choose I⃗j as the input parameters of network. The magnitude of I⃗j is 1/
⏐⏐⏐L⃗j⏐⏐⏐2, and the direction is as same as

that of the forward distance vector L⃗j. So, the x, y components I⃗j,x, I⃗j,y of I⃗j can be calculated with formulas below:⏐⏐⏐⃗Ij,x⏐⏐⏐ =
1⏐⏐⏐L⃗j⏐⏐⏐2 · cosθ (1)
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Fig. 3. The sketch of semicircular forward space of subject pedestrian. (a) The vector of forward distance L⃗j from the subject pedestrian to one of
the other pedestrians with two corresponding components L⃗j,x, L⃗j,y along x and y axes. (b) The semicircular forward space of the subject pedestrian
(red solid circle) with a radius of 2.1 m includes some experimental pedestrians (blue solid circle with +) and some discrete wall pieces (gray solid
rectangle with •).

⏐⏐⏐⃗Ij,y⏐⏐⏐ =
1⏐⏐⏐L⃗j⏐⏐⏐2 · sinθ (2)

According to the assumption d, the forward space of the subject pedestrian in this section is a red solid semicircle
with 2.1 m radius, as shown in Fig. 3(b). We choose the red solid circle as the subject pedestrian for example. In
his/her semicircular forward space, there are some experimental pedestrians (blue solid circle with +). These experimental
pedestrians have an effect on the movement of the subject pedestrian, so do the walls. In order to considering the effect of
the walls, we divided the continuous walls into many small discrete wall pieces, which is similar with the discretization
idea of cellular automata model [3]. These small discrete wall pieces are arranged (gray dotted hollow rectangles) at
interval of 10 cm along the lines extending outward for 10 cm from both walls. Now the objects which can affect the
motion the subject pedestrian include the discrete wall pieces and experimental pedestrians within the semicircular
forward space.

nc = np + nw (3)

where np, nw and nc respectively denote the number of experimental pedestrians, discrete wall pieces and the total objects
in the semicircular forward space.

The nc has different values for different subject pedestrian, which means the sample sets we produced will have
different dimensions. So, we cannot use these sample sets to train a network. To solve this problem, we build many
networks. The number of networks keeps consistent with that of nc values. The architecture of the ith neural network in
this section which has three layers is shown in Fig. 4. According to the total number of pedestrian in semicircular forward
space nc,i, the input parameters is{⏐⏐⏐⃗Ij,x⏐⏐⏐ , ⏐⏐⏐⃗Ij,y⏐⏐⏐ , j = 1, 2, . . . , nc,i

}
(4)

The magnitude of the subject pedestrian’ velocity |v⃗0| is as the target output. For hidden layers, how many neurons
should be used in hidden layers is still a problem [19]. So, we made an attempt according to some ‘‘rules of thumb’’ [19]
for choosing the hidden layer units. The number of neurons in hidden layer is given by

Nh =

⌈
Nin + Nout

2

⌉
(5)

2.2. Rectangular Forward Space Based submodel (RFSB-submodel)

The rectangular forward space based sub model are mainly used to predict the direction of pedestrians’ velocity. As
same as the semicircular forward space based sub model, we also use a three-layer BP neural network as the basic
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Fig. 4. The architecture of the neural network in semicircular forward space based submodel, including the input and output parameters and the
number of neurons in per layer.

framework of rectangular forward space based sub model. The output of this network is the direction of pedestrians’
velocity at current moment. The input parameters are selected as follows.

Pedestrian spatial distribution is a representation of pedestrian movement and can affect the motion of pedestrians.
Therefore, we choose the pedestrian spatial distribution as input parameters of the network. To quantify the pedestrian
spatial distribution, we firstly chose a 4.2 m × 2.1 m (selected according to assumption d) rectangle as the forward space
of the subject pedestrian, as shown in Fig. 5. Then, the rectangle was subdivided into many square grids. In order to ensure
pedestrians occupy a same grid as little as possible, after several trials, 0.3 m × 0.3 m grid size was chosen. Now we can
use a two-dimensional matrix with seven rows and fourteen columns to represent the pedestrian distribution. The value
of the element in the matrix corresponding to a grid will be changed from zero to one, when there is a pedestrian locating
in the grid. The rest of elements’ values still keep zero. We also considered the effect of walls. If the center of a grid is
outside of either wall, then the value of the element in the matrix corresponding to the grid will be also changed to one.
Besides, the pedestrians who is closer to the subject pedestrian have a stronger effect on the movement of the subject
pedestrian. To consider this effect, the input parameters of the network is the pedestrian spatial distribution weighted
the gauss distribution, as shown in Fig. 5.

Fig. 6 gives the architecture of the network in this section. The pedestrian spatial distribution matrix has been changed
to one dimension, so the number of the input neurons is 7×14 = 98. The same as Section 2.1, as an attempt, the number
of neurons in the first hidden layer is 50 calculated by Eq. (5). And the number in the second hidden layer is 25, a half
of that in the first hidden layer. The direction of pedestrians’ velocity θv⃗0 at the current moment is choose as the target
output of the network.

2.3. Implementation details

The Backpropagation algorithm is used to train the networks. Errors between network outputs and target outputs are
calculated based on the current weights of the network. Then stochastic gradient descent is used to adjust and optimize
the weights to reduce the errors of the network. We repeat this procedure until the training errors are reduced to an
acceptable scope. Learning rate is fixed at 0.01. The activation function in hidden and output layers are respectively tan-
sigmoid and rectified linear unit. In order to calculate the error between output values of the network and the target
values, we use the mean square error as the loss function shown below

E =

√ 1
N

N∑
i=1

|Oi − Ti|2 (6)
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Fig. 5. The sketch of rectangular forward space of the subject pedestrian and the corresponding pedestrian spatial distribution.

Fig. 6. The architecture of the neural network in rectangular forward space based submodel, including the input and output parameters and the
number of neurons in per layer.

where, Oi is the output of network, Ti is the corresponding target value, N is the total number of training samples.
In order to prevent the training overfitting, we applied the early-stop validation approach to supervise the training.

When the training samples are input into the network, they will be automatically and randomly divided into training
sets, validation sets and testing sets according to a certain proportion (80%, 15% and 5% in this paper). These three data
sets are independent with each other. The validation sets are mainly used to detect overfitting during training. When an
iteration is completed, the validation sets will be applied on the current-state trained network to obtain validation errors.

3. Experiments

In the sections of Experiments and Results, we evaluate our model on two scenarios: unidirectional flow scenario and
bidirectional flow scenario. The simulation results are compared with that of experiments and other’s works from both
qualitative and quantitative perspectives.

3.1. Datasets

3.1.1. Unidirectional flow
Unidirectional flow data are from a dataset built up by the institute section Civil Safety Research in the Research

Centre Jülich in Germany, which is a professional pedestrian dynamical dataset under laboratory experimental condition
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Table 2
Parameters of unidirectional flow experiments in the straight corridor.
Experiment index Name bent/m bcor/m bexit/m N

1 UF-080-300-300 0.80 3.00 3.00 119
2 UF-100-300-300 1.00 3.00 3.00 100
3 UF-120-300-300 1.20 3.00 3.00 163
4 UF-180-300-300 1.80 3.00 3.00 208
5 UF-240-300-300 2.40 3.00 3.00 296
6 UF-300-300-300 3.00 3.00 3.00 349

Fig. 7. (a) Sketch of the unidirectional flow experimental setup [22]. (b) Snapshots of the experiment UF-100-300-300 from two cameras respectively.

and publicly available on [20]. The sketch of experimental setup and two snapshots are shown in Fig. 7. The length and
width of the corridor are 8 m and 3 m. The experiments were conducted with up to 350 participants who were composed
mostly of students. The experiments were recorded by two cameras (frame rate: 16 fps) mounted at the rack of the ceiling
of the hall. The pedestrian trajectories were automatically extracted from the video recordings by using the software
PeTrack [21] and were directly downloaded from the website http://ped.fz-juelich.de/da/2009unidirOpen. The detailed
information on the data extraction principle of the software can be found in [21]. The free speed 1.55 ± 0.18 m/s was
obtained by measuring 42 participants’ free movement [22]. We choose six runs trajectories of the experiments with
different pedestrian densities to generate the training samples, as shown in Table 2.

3.1.2. Bidirectional flow
Bidirectional flow data are also from the dataset built up by the institute of Civil Safety Research in the Research Centre

Jülich in Germany [20]. The experimental setup of bidirectional flow is highly consistent with that of the unidirectional
flow described in Section 3.1.1. The sketch of the experiment setup is shown in Fig. 8. The length and width of the
corridor are 8 m and 3 m. The experiments were conducted with up to 350 participants who were composed mostly
of students. The experiments were recorded by two cameras (frame rate: 16 fps) mounted at the rack of the ceiling of

http://ped.fz-juelich.de/da/2009unidirOpen


X. Zhao, L. Xia, J. Zhang et al. / Physica A 547 (2020) 123825 9

Fig. 8. Sketch of setup in the bidirectional flow experiment [23].

Table 3
Parameters of bidirectional flow experiments in the straight corridor.
Experiment index Name bl/m bcor/m br/m Nl Nr

1 BF-050-300-050 0.50 3.00 0.50 54 71
2 BF-065-300-065 0.65 3.00 0.65 64 83
3 BF-075-300-075 0.75 3.00 0.75 61 86
4 BF-085-300-085 0.85 3.00 0.85 119 97
5 BF-100-300-100 1.00 3.00 1.00 125 105

Table 4
Number of training samples in unidirectional flow scenario.
Submodel Network Architecture Number

nc,i Network i Nin × Nh1 × Nh2 × Nout

SFSB

1 1 2 × 2×2 × 1 874
2 2 4 × 3×3 × 1 1355
. . . . . . . . . . . .
27 27 54 × 28×28 × 1 12014
. . . . . . . . . . . .
41 41 82 × 42×42 × 1 90
42 42 84 × 43×43 × 1 13

RFSB 98 × 50×25 × 1 131219

the hall. The pedestrian trajectories were directly downloaded from the website http://ped.fz-juelich.de/da/2009bidirSym.
The average free speed 1.55 ± 0.18 m/s was obtained by measuring 42 participants’ free movement [23]. We choose five
runs trajectories of the experiments with different pedestrian densities to generate the training samples, as shown in
Table 3.

3.2. Data preprocessing

Before generating the training samples, we preprocessed these pedestrian trajectories. First, we smoothed the pedes-
trian trajectories to avoid the effect of pedestrian body swaying. The direction of pedestrian bodies swaying is the y
direction, so we only processed the y coordination. We use the mean filter, which means the y coordination at time t is
replaced by the mean of that at time t − 1 and time t + 1. Then, cubic spline interpolation was applied on the midpoints
obtained between peak points and neighboring trough points. Fig. 9 gives the initial and smoothed pedestrian movement
trajectories in two different density. Other trajectory smoothing methods [24,25] are suitable for this preprocess as well.
Second, PauTa criterion method [26] was applied on the data points consisting of the magnitude and direction of velocities
of all pedestrians at each moment to remove the data including gross error. The red bold lines shown in Fig. 10 are the
results. These data were removed when generating training samples.

3.3. Network training

For preprocessed pedestrian trajectories in unidirectional flow, we chose a time step of one frame (16 frames =

1 s) to generate training samples. The number of training samples of each network in unidirectional flow scenario
and bidirectional flow scenario are listed in Table 4 and Table 5 respectively. Especially, in bidirectional flow scenario,
according to the different pedestrian movement direction (from left to right and from right to left), the samples are divided
into two groups to respectively train the networks for the better performance of the model.

Here, we take the unidirectional flow scenario as an example to describe the training process and the convergence of
the networks. Fig. 11 presents the training process of network and the performance of the trained networks on validation

http://ped.fz-juelich.de/da/2009bidirSym
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Fig. 9. (a) An individual’s initial experimental trajectory and corresponding smoothed trajectory. (b) All pedestrians’ initial experimental pedestrian
trajectories and corresponding smoothed trajectories under two different densities.

Fig. 10. The initial experimental pedestrian trajectories and the detected abnormal movement data (red lines) using PauTa criterion method.

sets and testing sets in unidirectional flow scenario. From Fig. 11(a) and (b), we can see that the mean squared error
decreased rapidly in the beginning several epochs, then the decrease rate becomes low. Finally, the error of network
converges on a small value. Besides, Fig. 11(c) presents the errors of testing sets applied on the total trained networks in
SFSB and RFSB. The errors are almost below 0.15 m, which indicates that the trained networks perform well on testing
sets.
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Table 5
Number of training samples in bidirectional flow scenario.
Submodel Network Architecture Number

nc,i Network i Nin × Nh1 × Nh2 × Nout L→R R→L

SFSB

1 1 2 × 2×2 × 1 567 490
2 2 4 × 3×3 × 1 502 483
. . . . . . . . . . . . . . .
27 27 54 × 28×28 × 1 3696 3097
. . . . . . . . . . . . . . .
41 41 82 × 42×42 × 1 4 12
42 42 84 × 43×43 × 1 2 2

RFSB 98 × 50×25 × 1 51424 50173

Fig. 11. The training process of network and the performance of networks on validation sets and testing sets in unidirectional flow scenario. (a)
Error profile of 25th network training in SFSB. (b) Error profile of network in RFSB. (c) The performance of trained networks on testing sets.

4. Results and discussions

We apply the proposed model on unidirectional flow and bidirectional flow scenarios to simulate the pedestrian
behavior. The dimension of the simulation scenario, the initial location and entering time of each pedestrian in the
simulation region are all kept the same as that in the experiments. Then, the movement velocity of each pedestrian
at every future time all use the trained networks to predict. The magnitude of velocity uses the SFSB-submodel to predict
and the direction of velocity uses the RFSB-submodel to obtain. When using the SFSB-submodel, it must be noted that the
number of pedestrians within the semicircular forward space of the subject pedestrian may be more than the maximum
of nc during the simulation. In this case, we cannot use the SFSB-submodel to obtain the magnitude of velocity. To address
this problem, we give a solution that the pedestrians farthest away from the subject pedestrian are eliminated until the
number of rest pedestrians is equal to the maximum of nc . Besides, if no pedestrians are in the semicircular forward space,
the magnitude of the velocity is set as 1.55 m/s (the average free speed of experiment pedestrians). The simulation time
step is 1/16 s (one frame) and the parallel update rule is used to update the pedestrians’ locations. In addition, at each
iteration of the position update, the pedestrians’ coordinates are updated in a random sequence. The simulation results
are presented and analyzed below.
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Fig. 12. Comparison of pedestrian trajectories in simulations and experiments with four different densities in unidirectional flow scenario. The
pedestrian trajectories in the simulations were all basically consistent with the corresponding experiments.

4.1. Unidirectional flow scenario

In the unidirectional flow scenario, the first four experiments with different densities listed in Table 2 are simulated.
The simulated pedestrian movement trajectories are presented in Fig. 12. From the figure, we can see that the pedestrian
trajectories in the simulations are all basically consistent with the corresponding experiments.

Moreover, in order to quantitatively illustrate the trajectories error between simulations and experiments, we defined
two evaluation indicators, mean destination error (MDE) and mean trajectory error (MTE). The mean destination error is
calculated by the formula

MDE =
1
N

N∑
i=1

DEi =
1
N

N∑
i=1

[
(xDi , y

D
i )exp − (xDi , y

D
i )sim

]
(7)

where, N is the number of pedestrians in an experiment. (xDi , y
D
i )exp and (xDi , y

D
i )sim respectively donate the coordinate

of the ith pedestrian at the last time step before leaving out of the corridor in the experiment and simulation. DEi is
the distance between (xDi , y

D
i )exp and (xDi , y

D
i )sim. The smaller the MDE is, the smaller the destination error between the

simulation and experiment is. Fig. 13 gives the DE-frequency histograms in each case. As shown in this figure, more than
90% pedestrians’ destination error (DE) are less than 0.5 m and the MDE is all about 0.2 m, 2.5% of the corridor length.
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Fig. 13. The DE-frequency histograms of four different cases in unidirectional flow scenario. More than 90% pedestrians’ destination error (DE) are
less than 0.5 m and the MDE are all about 0.2 m, 2.5% of the corridor length.

Fig. 14. The MTE-frequency histograms of four different cases in unidirectional flow scenario. Almost all pedestrians’ mean trajectory error (MTE)
are less than 0.5 m and MTE are all about 0.12 m, 1.5% of the corridor length.

The mean trajectory error of a pedestrian is defined by

MTE =
1

totalTS

totalTS∑
t=1

TEt =
1

totalTS

totalTS∑
t=1

[
(xt , yt )exp − (xt , yt )sim

]
(8)

where, TEt represents the location error (distance) of one pedestrian in simulation and experiment at time step t . MTE is
the mean of TEt at total time steps (totalTS). Fig. 14 gives the MTE-frequency histograms in each case. As shown in this
figure, under four different densities, almost all pedestrians’ mean trajectory error (MTE) are less than 0.5 m. We also
calculate the mean of MTE (MTE)

MTE =
1
N

N∑
i=1

MTE (9)

which are all about 0.12 m, 1.5% of the corridor length. The small mean destination error and mean trajectory error both
indicate that the simulation using the model proposed in Section 2 is acceptable in the term of pedestrian movement
trajectories.

Besides, we also compare the speed-density and flow-density fundamental diagrams between simulations and ex-
periments. The density and speed data both in simulations and experiments are extracted in a 2 m × 3 m rectangle
measurement area shown in Fig. 7(a). The density and speed are calculated using the Method B in [22]. Then, the flow is
obtained by

J = ρ · v · bcor = ρ · v · 3 (10)

The results of four cases in simulations and experiments are shown in Fig. 15(a). The overall distributions of the data points
of the simulations are basically in line with the corresponding experiments. In addition, we calculated the mean speed and
flow of four cases. Fig. 15(b) shows the results, which also shows that the speed-density and flow-density fundamental
diagrams in simulations are basically consistent with the experiments. These results imply that the proposed model in
this paper performs well on simulating the pedestrian unidirectional flow illustrated in this paper.

4.2. Bidirectional flow scenario

Apart from the unidirectional flow scenario, we also apply our model on bidirectional flow scenario. We simulate the
four sets of bidirectional flow experiments with different densities listed in Table 3. Taking the experiment BF-085-300-
085 as an example, the pedestrian distributions and trajectories of simulation are showed and compared with that of
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Fig. 15. Comparison of fundamental diagrams between simulations and experiments in unidirectional flow scenario. (a) Density-speed and
density-flow diagrams. (b) The mean speed and flow related to density.

experiment. From Fig. 16(b), we can see the basic coherence of pedestrian trajectories in simulation and experiment.
Moreover, the lane formation phenomena can be obviously observed from Fig. 16(a), which indicates our model can
reproduce the typical self-organized behavior of pedestrians.

In addition, the comparisons of fundamental diagrams between simulation and experiment are presented in Fig. 17.
The density and speed data are calculated in the measurement area given in Fig. 8. It can be seen from Fig. 17 that the
overall distributions of the data points of the simulations are basically in line with the corresponding experiments.

To better illustrate the reliability of the proposed model, we also make a quantitative comparison of trajectories. The
relative distance error (RDE) [10] at time step t for pedestrian n is defined by

E (t, n) =

P simu (t + ∆t, n) − Pexpr (t + ∆t, n)


Pexpr (t + ∆t, n) − Pexpr (t, n)
(11)
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Fig. 16. Comparison of pedestrian distributions and trajectories in bidirectional flow scenario. (a) Pedestrian distributions. (b) Pedestrian trajectories,
in which the blue and red lines represent pedestrian moving to the left and right, respectively.

Fig. 17. Comparison of density-speed and density-flow fundamental diagrams between simulation and experiment in BF-085-300-085.

Given ∆t = 0.5 s, the relative distance error is calculated over each time step for each pedestrian. Fig. 18 gives the
frequency distribution of the relative distance error in BF-080-300-085. The average relative distance errors in four
different densities experiments are respectively 0.146 m, 0.150 m, 0.152 m, 0.159 m and 0.157 m, which are almost a half
of the result (0.332 m) in Ref. [10]. These results indicates the proposed model in our paper has a good performance on
simulating pedestrian behavior in bidirectional flow scenarios.

5. Conclusion

In this paper, a pedestrian movement model based on artificial neural network is proposed. This model consists of two
sub models, which are respectively used to learn the magnitude and direction of pedestrian movement velocity. On the
basis of this goal, we process the forward space of the subject pedestrian into two shapes, semicircle (radius 2.1 m) and
rectangle (length × width = 4.2 m × 2.1 m). We consider that only the pedestrians within the semicircular and rectangular
forward space have an effect on the movement of the subject pedestrian. Besides, the effect of wall is replaced by the visual
pedestrians set in a certain way. In the semicircular forward space based submodel (SFSB-submodel), the effect between
the subject pedestrian and other pedestrians in semicircular forward space is presented in the term of the forward distance
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Fig. 18. Frequency distribution of the relative distance error in BF-080-300-085.

vector L⃗. The vector I⃗ (magnitude is 1/
⏐⏐⏐L⃗⏐⏐⏐2 and direction is as same as that of L⃗) is chosen as input parameters of the SFSB-

submodel to the learn the magnitude of the subject pedestrian’s current velocity. It should be noted that the number of
other pedestrians in semicircular forward space nc may be different for different subject pedestrian, causing the dimension
of input parameters inconsistent. We build nc networks to solve this problem. In rectangular forward space based sub
model (RFSB-submodel), pedestrian spatial distribution weighted the gauss distribution is chosen as input parameters to
learn the direction of the subject pedestrian’s current velocity. The networks involved in two submodels all have three
layers and are trained using backpropagation algorithm. Early stop validation is applied to prevent training overfitting.

The proposed model is applied on two typical scenarios, unidirectional flow and bidirectional flow. The simulation
results are compared with experiment results from pedestrian movement trajectory and speed-density and flow-density
fundamental diagrams. The results show that the simulation results are basically consistent with that in corresponding
experiment. Besides, in unidirectional flow scenario, we define two evaluation indicators, mean destination error (MDE)
and mean trajectory error (MTE), to quantitatively illustrate the trajectory error between simulations and experiments.
MDE and MTE are calculated to be about 0.2 m and 0.12 m under four different densities, respectively 2.5% and 1.5%
of the corridor length. In bidirectional flow scenario, relative distance error (RDE) is about 0.15 m, a half of the result
in [10]. And the typical lane-formation phenomena are observed in the simulation of bidirectional flow. These comparisons
and analyses all indicate that the proposed model is reasonable and capable of simulating pedestrian behavior in both
unidirectional and bidirectional flow scenarios illustrated in this paper.

Although the model proposed in the paper can simulate pedestrian movement in both unidirectional and bidirectional
flow scenarios in straight corridors well, there are still some problems should be noted. Firstly, hidden layers play a vital
role in the performance of Back Propagation Neural Network [19]. But it is confusing that how much the number of
hidden layers and number of neurons in each hidden layer should be selected [19,27–29]. Our work gave a first attempt
in selection of the hidden neurons number. However, the performance of other architectures need more deeply explore.
Besides, in our model, the input features of neural networks only contain the interaction between the subject pedestrian
and other pedestrians or walls. While one pedestrian’s movement is also relevant with his goal and original velocity
(inertia factor) including magnitude and direction. These factors will be considered in the future work. In addition, it
is worthy to further explore the ability of the model to describe behaviors in other scenarios like the mixed corridor
scenarios with different widths.
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